A PHASE IA STUDY OF VGA039, A PROTEIN S-TARGETING MONOCLONAL ANTIBODY, IN INDIVIDUALS WITH VON WILLEBRAND DISEASE DEMONSTRATES CONCENTRATION-DEPENDENT INCREASES IN THROMBIN GENERATION FOR REDUCING BLEEDING

Carolyn M. Millar^{1,2}, Priyanka Raheja³, Allison P. Wheeler⁴, Shrinath Kshirsagar⁵, Christian Schörgenhofer⁶, Nicoletta Machin⁷, Cihan Ay⁸, Almudena Tercero⁹, Hayley Lane⁹, Christopher J. Horvath⁹, Sandip Panicker⁹, Gary Patou⁹, Benjamin Kim⁹, Savita Rangarajan^{4,10}

¹Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK

²Imperial College Healthcare NHS Trust, London, UK

³The Royal London Hospital Haemophilia Centre, Barts Health NHS Trust, London, UK

⁴Washington Center for Bleeding Disorders and Divisions of Pediatric Hematology/Oncology and Hematology/Oncology, University of Washington, Seattle, WA, USA

⁵Advanced Center for Oncology, Haematology & Rare Disorders, K. J. Somaiya Medical College & Research Center, Somaiya Ayurvihar, Mumbai, Maharashtra, India

⁶Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria

⁷Division of Classical Hematology, Department of Medicine, University of Pittsburgh and Hemophilia Center of Western Pennsylvania, Pittsburgh, PA, USA

⁸Division of Hematology and Hemostaseology, Department of Medicine, Medical University of Vienna, Vienna, Austria

9Star Therapeutics, Inc., South San Francisco, CA, USA

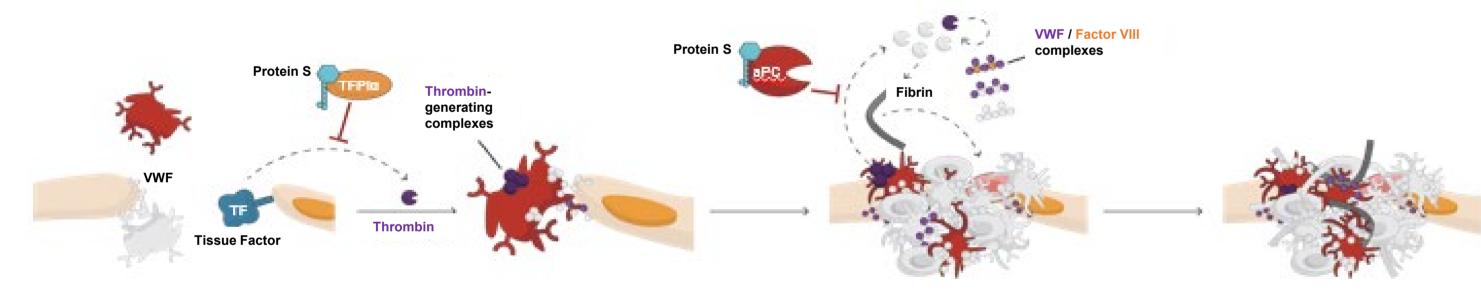

¹⁰University Hospital Southampton NHS Foundation Trust, Southampton, UK

INTRODUCTION

VWD Patients Have High Treatment Burden But Limited Treatment Options

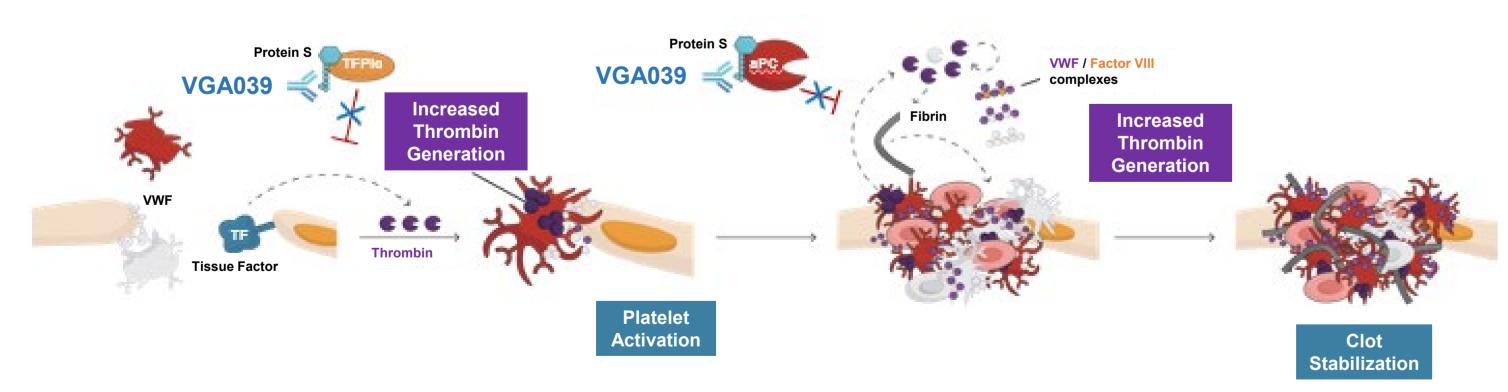
- Von Willebrand Disease (VWD) affects up to 1% of the population
- Patients with VWD experience heterogeneous bleeding manifestations and severity
- Problems with platelet adhesion/activation (deficient/defective VWF) & clot stability (limited FVIII half-life)

VWD Presentation


Current Treatments are Burdensome and Limited

- Frequent IV factor concentrate infusions (2-3 times/week)
- Adjunctive treatments with short-lived therapeutic durability and/or substantial side effects
- DDAVP
- Anti-fibrinolytics
- Hormonal therapies for heavy menstrual bleeding

Non-Factor Therapies May Fulfill Unmet Needs


- Less frequent dosing and more convenient administration than factor concentrate prophylaxis to reduce bleeding
- Potential to provide hemostatic balance in various bleeding disorders

In VWD, Bleeding is Associated with Insufficient Platelet Adhesion and Unstable Clot Formation

In VWD, qualitative and/or quantitative defects in VWF, the carrier protein for FVIII, result in VWF and FVIII deficiencies, creating a coagulation imbalance characterized by insufficient platelet adhesion, thrombin generation, fibrin deposition, and unstable clot formation

VGA039 Rebalances Coagulation in VWD by Increasing Thrombin Generation, Platelet Activation, and Clot Stabilization to Decrease Bleeding

VGA039 works independent of VWF, blocking Protein S cofactor activity for tissue factor pathway inhibitor alpha- (TFPIα-) and activated Protein C (APC)-mediated inhibition of thrombin generation, thereby rebalancing thrombin generation during the initiation and propagation phases of coagulation to decrease bleeding

VGA039-CP001, PART 2

NCT05776069

VIWID 2

OBJECTIVE

 To evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy (exploratory) of a single ascending dose of subcutaneous VGA039

METHODS

VIVID 2: Subcutaneous (SC) Single Ascending Dose (SAD) in VWD Patients

Study Design

- Open-label, single ascending dose of SC VGA039
- IV cohorts (Cohorts A-D) skipped, per Sponsor decision
- Starting SC dose: 3.0 mg/kg (maximally tested SC dose in healthy volunteer SAD)
- 3 patients per cohort, potential to expand by 2-6
- Dose escalate until sufficient pharmacodynamic (PD) effect observed or dose escalation stopping criteria met
 - D-dimer >4x upper limit of normal (2.0 μg/mL), in 2 consecutive results separated by at least 24 hours and in at least 2 subjects

Key Inclusion/Exclusion Criteria

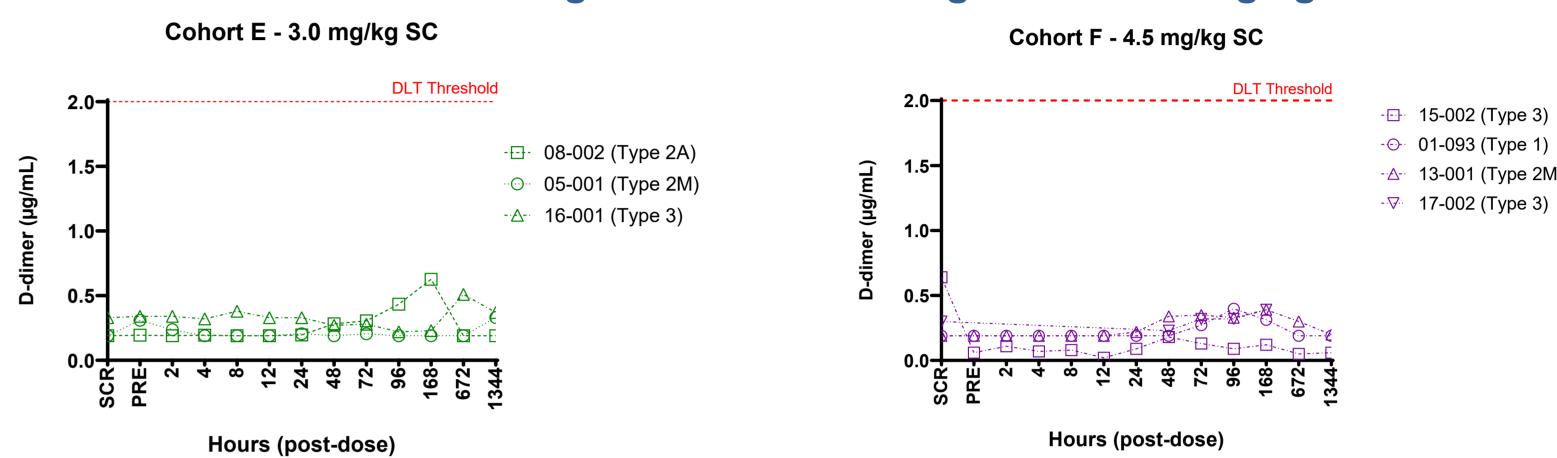
- Males & females, ages 18-60
- Symptomatic VWD (history of bleeding or bruising) of any type/sub-type
- No history of thromboembolism
- Negative thrombophilia testing
- FVIII activity ≤50 IU/dL

RESULTS

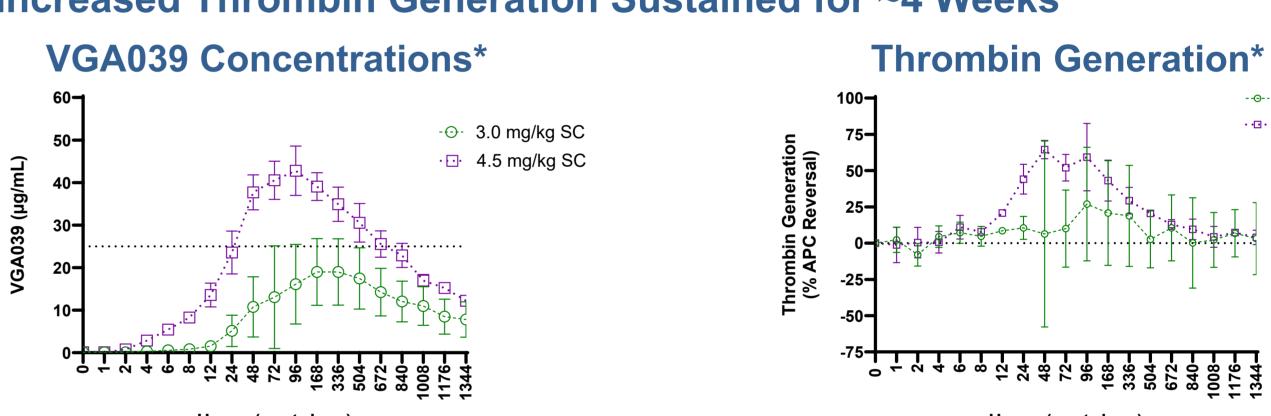
Range of Ages, VWD Types/Sub-Types, FVIII Activities, & Body Weights Represented

Subject ID	Cohort	SC Dose	Sex	Age (Years)	Type/ Sub-Type	Baseline FVIII Activity	Weight (kg)
08-002	Е	3.0 mg/kg	Male	51	Type 2A	26 IU/dL	77.2
05-001	Е	3.0 mg/kg	Female	31	Type 2M	25 IU/dL	64.2
16-001	Е	3.0 mg/kg	Female	37	Type 3	27 IU/dL	115.7
15-002	F	4.5 mg/kg	Male	24	Type 3	5 IU/dL	100.0
01-093	F	4.5 mg/kg	Male	28	Type 1 + Mild hemophilia A	9 IU/dL	72.0
13-001	F	4.5 mg/kg	Female	21	Type 2M	23 IU/dL	46.7
17-002	F	4.5 mg/kg	Male	52	Type 3	2 IU/dL	153.7

IV dose cohorts (Cohorts A-D) skipped, given VGA039's high bioavailability (≥98%)³

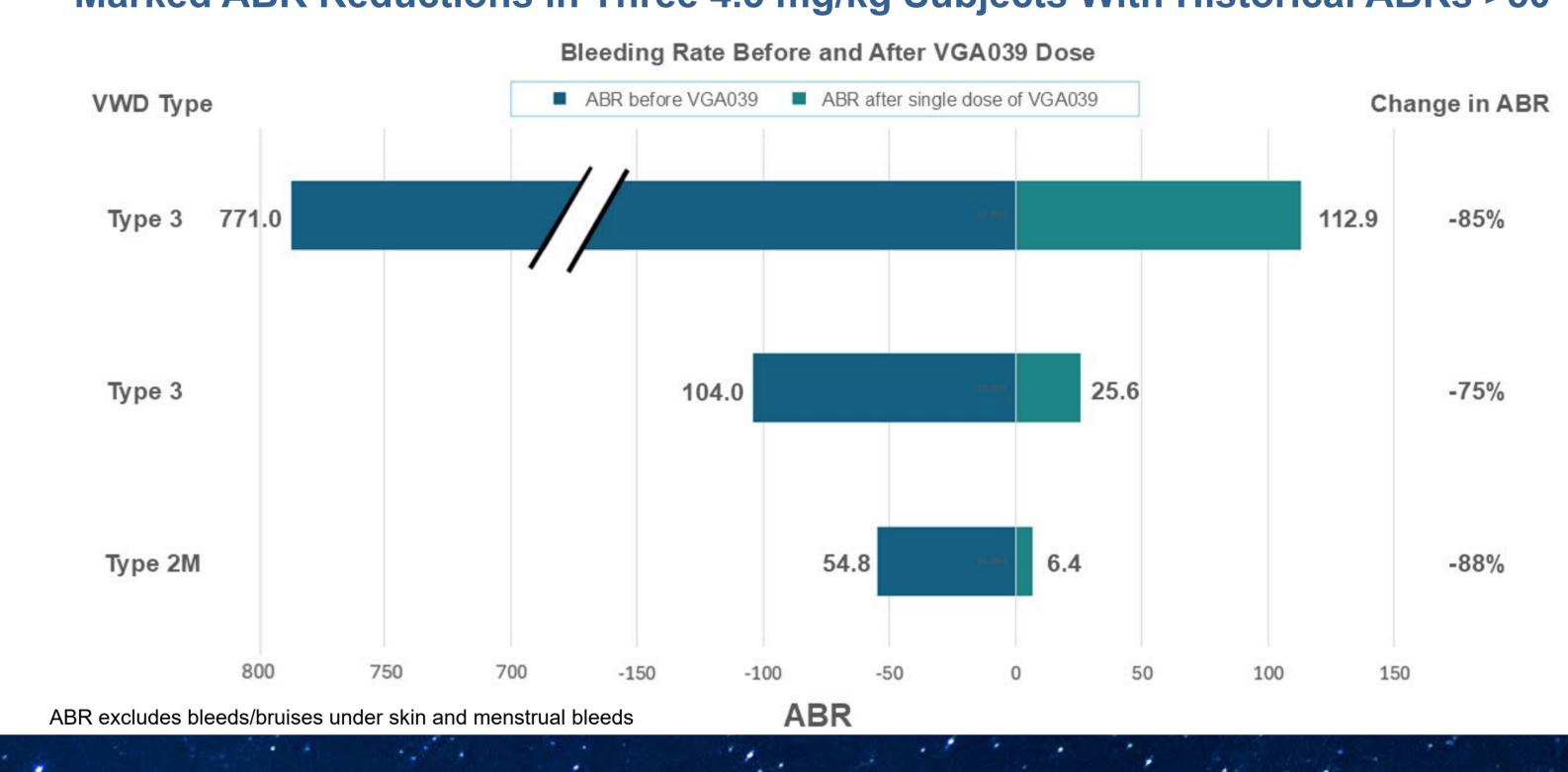

Summary of Dosing & Safety

- A total of 7 VWD patients have been dosed in 2 cohorts (3 patients dosed with VGA039 in Cohort E & 4 patients in Cohort F)
- No Grade 2 or higher AEs
- No study drug-related AEs
- No remarkable abnormalities in laboratory, physical exam, or ECG parameters
- No injection-site reactions reported
- No thromboembolic events reported
- No dose escalation-stopping criteria met


ABR=annualized bleeding rate; AE=adverse event; DDAVP=desmopressin; DLT=dose-limiting toxicity; ECG=electrocardiogram; FVIII=factor VIII; IV=intravenous; VWF=von Willebrand factor.

RESULTS (CONTINUED)

No D-dimer Dose-Limiting Toxicities with Single 3.0 or 4.5 mg/kg SC Dose



Single 4.5 mg/kg SC Dose: VGA039 Concentrations Associated With Increased Thrombin Generation Sustained for ~4 Weeks

Marked ABR Reductions in Three 4.5 mg/kg Subjects With Historical ABRs >50

··□· 4.5 mg/kg SC

CONCLUSIONS

* Not including 17-002's results (pending)

- VGA039 was safe and well tolerated in this SC SAD study in VWD subjects across all types
- ABR reductions observed in patients achieving VGA039 plasma concentrations associated with increased thrombin generation and in the absence of DLTs
- Additional dose cohort (Cohort G: 7.0 mg/kg) underway
- SC multi-dose VGA039 investigation is planned

References: 1. Sidonio RF et al. *J Blood Med*. 2020;11:1-11. 2. The diagnosis, evaluation, and management of von Willebrand disease. NIH Publication No 08-5832. 2007. 3. Schorgenhofer C et al. Accessed

https://isth2024.eventscribe.net/fsPopup.asp?efp=R0tKSkNBT0ExNjMzNg&PresentationID=1433044&rnd=0.5960945&mode=presInfo on November 10, 2024.